Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery

نویسندگان

  • Jeong Ho Shin
  • Jae Yong Song
چکیده

Sn-based oxide materials as an anode of lithium ion batteries (LIBs) suffer from the unavoidable mechanical stress originated from huge volume changes during lithiation/delithiation reactions. We synthesized the hierarchical SnO nanobranches (NBs) decorated with Sn nanoparticles on Cu current collector using a vapor transport method. The Sn-decorated SnO NBs as an anode of LIB showed good electrochemical performance with high reversible capacity retention of as high as 502 mAh/g and rate capability of 455 mAh/g at a current density of 2.0 A/g after 50 cycles. Through the morphological and crystal structure analyses after the charge and discharge processes, it was found that the morphology of Sn-decorated SnO NBs was transformed to nanoporous layered-structure, composed of Sn and lithium oxide, during the repeated lithiation/delithiation reactions. The free-volume of Sn-decorated SnO NBs and nanoporous layered-structure effectively accommodate the huge volume changes and enhance the electrochemical cyclability by facilitating the diffusion of Li-ions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries

The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions. The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman mode...

متن کامل

Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.

A method for preparing multiphasic hollow rods consisting of nanoscale Sn-based materials through a thermochemical reduction process involving bacteria and Sn oxides is reported. This facile process involves the bacteria-mediated synthesis of SnO(2) nanoparticles that form on bacterial surfaces used as templates at room temperature. The subsequent template removal proceeds via a reduction of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016